The clinical efficacy of septoplasty and inferior turbinate reconstruction in unilateral atrophic rhinitis
Ossama M. Mady, Ahmed M. Maarouf, Ahmed A. Teaima

Department of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Correspondence to Ossama M. Mady, MD, Lecturer of otolaryngology, Ain shams university, 62 C, Gardenia Heights 3, 5th Settlement, New Cairo, 11566, Egypt. e-mail: omady64@gmail.com

Received 09 October 2020
Revised 22 November 2020
Accepted 05 December 2020
Published 09 August 2021

Pan Arab Journal of Rhinology
2021, 11:43–46

Introduction
Atrophic rhinitis (AR) is a chronic progressive disease, characterized by atrophy of nasal mucosa and turbinates, and presence of a viscid secretion with foul odor. AR may be primary or secondary [1].

Klebsiella ozaenae is a causative organism in many cases of primary AR. Hereditary, nutritional deficiency, endocrinial disturbances, and autoimmune causes may also be responsible for primary AR [2].

Secondary AR may be owing to syphilis, rhinoscleroma, lupus, chronic sinusitis, excessive surgical resection of the inferior turbinate, or deviated nasal septum [3].

Incidence of AR varies from 0.3 to 1% of population (primary AR 82% and secondary AR 18% of cases) [3].

Patients with AR mainly present with nasal obstruction, fetor, nasal discharge, anosmia, epistaxis, excessive crustations in the nose, and the nasal cavity appears larger [4].

Treatment of AR included medical and surgical lines; medical such as irrigation, antibiotics, glucose in glycerin drops, iron, multivitamins, and zinc. Surgical treatment is needed to decrease the size of the cavity by submucosal injection of different implant materials (e.g., medpor, silastic, allogdrem, or hyaluronic acid) or increase lubrication by insertion of parotid gland duct into antrum of maxillary sinus [2].

The aim of surgery in AR is to permit considerable volume of air to cross the nasal cavity mainly by narrowing of the nasal airway, which was known as Young's operation with nasal irrigation and ointment application [5].

Objectives
Our aim was to study the effect of septoplasty and inferior turbinate reconstruction with the autogenous septal cartilage in the management of secondary AR due to deviated nasal septum.

Patients and methods
The study was done on 13 patients. Sino-Nasal Outcome Test-25 (SNOT-25) was estimated preoperatively and at 3, 6, and 12 months postoperatively. Septoplasty and usage of autogenous septal cartilage for reconstruction of inferior turbinate were done.

Results
The results were significant and showed dramatic improvement in SNOT-25 and quality of life, with no complications during 12 months postoperatively.

Conclusion
Surgical correction of secondary AR, due to deviated nasal septum, by septoplasty and inferior turbinate reconstruction with autogenous cartilage had good effect on SNOT-25 and quality of life, with no complications.

Keywords:
atrophic rhinitis, septoplasty, turbinate reconstruction and nasal crustation

Pan Arab J Rhinol 11:43–46
© 2021 2090-7640

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2021 Pan Arab Journal of Rhinology | Published by Wolters Kluwer - Medknow
DOI: 10.4103/pajr.pajr_29_20
Faculty of Medicine, Ain Shams university (number FMASU R 36/2020 – Faculty of Medicine, Ain Shams University research number 36 in 2020). Informed consent was obtained from all individual participants included in the study.

Study design
It was an interventional pilot study on 13 patients.

Interventions
The intervention included septoplasty and usage of autogenous septal cartilage for reconstruction of inferior turbinate.

Main outcomes and measures
The main outcome was assessment of patients with Sino-Nasal Outcome Test-25 (SNOT-25) questionnaire, preoperatively and at 3, 6, and 12 months postoperatively.

The study included 13 patients with unilateral AR and deviated septum to the opposite side. History, endoscopic examination, and computed tomographic scanning of nose and paranasal sinus were done. All our patients showed no response to medical treatment for 6 months before surgery (medical treatment in the form of nasal irrigation, saline douches, liquid paraffin drops, glycerin drops, local and systemic antibiotics, and multivitamins) and had no previous nasal surgery, radiotherapy, or nasal trauma.

Regarding history, the main and presenting complaints were nasal obstruction (in 100% of our patients), foul odor, severe nasal crustation, and postnasal drip.

Regarding examination, markedly deviated septum, in roomy nose side extensive crustation, and atrophy of inferior and middle turbinate were found.

SNOT-25 score (Table 1) was estimated initially preoperatively and then at 3, 6, and 12 months postoperatively.

Surgical technique
Septoplasty was done first, and after correction of the deviated septum, the removed cartilage was used as autogenous implant for augmentation of the lateral nasal wall and inferior turbinate, and then creation of a pocket just inferior to the inferior turbinate in the roomy side by elevation of the mucoperiosteal flap. Thereafter, the pocket was filled with cartilage (three to four pieces of septal cartilage each of 2–3 cm length and 1–2 cm width). Closure of the pocket was done, followed by nasal packing with Vaseline gauze for 48 h.

Results
Our study included 13 patients, comprising five (38%) males and eight (62%) females. The mean age was 25 years.

The total SNOT-25 was estimated preoperatively and during 3, 6, and 12 months postoperatively, as shown in Table 2.

The mean score of total SNOT-25 preoperatively was 104.84, which become 25.38 at 12 months postoperatively, as shown in Table 3.

Regarding ENT-specific symptoms, the highest score preoperative was regarding difficulty with nasal breathing and the smallest was regarding suffocation.

All symptoms improved postoperatively, especially at 3 months. At 12 months, the lowest score (significant improvement) was regarding nasal crustations. The mean values of ENT-specific symptoms are illustrated in Table 4 and Fig. 1. Improvement of total SNOT-25 score of each patient is illustrated in Fig. 2.

Clinical improvement and healthy nasal mucosa were noticed during follow-up in contrast to the atrophic preoperative nasal mucosa, as shown in Fig. 3.

Discussion
In AR, there is a change in histological structure and loss of mucociliary clearance, so formation of thick nasal discharge and nasal crustation [7].

Instead of long-life medical treatment and irrigation in AR, which may not so effective, the cause of secondary
Clinical efficacy of septoplasty Mady et al. 45

AR should be treated [3]. In our study, 13 patients with unilateral AR owing to deviated nasal septum had undergone septoplasty and augmentation of the lateral nasal side and inferior turbinate with the autogenous septal cartilage.

Narrowing of the airway in the roomy side after surgery leads to decrease amount of flow during inspiration, so less drying and less crustations and helps in regeneration of nasal mucosa [5].

A healthy normal nose is responsible for ~50% of airway resistance. In AR, there was a decline in nasal resistance, so imbalance of airway resistance, leading to deep inspiration, shortness of breath, and sensation of suffocation [8].

In the present study, there was a highly significant improvement of SNOT-25 after surgery, especially at 3 months postoperatively, were all symptoms improved, including suffocation and difficulty with nasal breathing, leading to improvement of chronic fatigue, irritability, anxiety, and frustration. The early significant postoperative improvement is owing to surgery, and we cannot ignore the postoperative improved nasal hygiene.

Our results go along with the data by Saafan [9] and Jiang et al. [10] regarding significant improvement in the SNOT-25 postoperatively. The score was reduced at 3, 6, and 12 months of follow-up in comparison with the primary preoperative score ($P < 0.01$). Improvement of the quality of life of our patients was a supportive indicator about effectiveness of our technique.

Table 2 Scores of total Sino-Nasal Outcome Test-25 for the study group

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Sex</th>
<th>Age</th>
<th>Total SNOT-25 score</th>
</tr>
</thead>
<tbody>
<tr>
<td>M: male 22</td>
<td>112</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>F: female 16</td>
<td>98</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>24</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>26</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>35</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>25</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>19</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>32</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>33</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

SNOT-25, Sino-Nasal Outcome Test-25.

Table 3 The mean Sino-Nasal Outcome Test-25 and its P value during follow-up

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>3 months</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>104.85</td>
<td>43.85</td>
<td>28.46</td>
<td>25.38</td>
</tr>
<tr>
<td>Observations</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>P Preoperative 3 months</td>
<td><0.01 (HS)</td>
<td><0.01 (HS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P Preoperative 12 months</td>
<td><0.01 (HS)</td>
<td><0.01 (HS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months 12 months</td>
<td>>0.05 (NS)</td>
<td>>0.05 (NS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HS, highly significant.
Saafan[9] compared acellular dermal grafts versus silastic as submucosal implants. There were improvements after surgery, and no significance between the two groups. However, Jiang et al.[10] used medpor implant for augmentation of inferior turbinate, and there was significant improvement in symptoms of AR.

Several materials are used for augmentation of the inferior turbinate and treatment of AR, such as silastic, medpor, and hyaluronic acid, but they carry a risk of extrusions or rapid resorption [11]. In our study, no recorded complications of extrusions were found along 12 months of follow-up.

In our opinion, we had limitations or weak points in our study, such as limited number of patients and lack of rhinomanometry.

Conclusion

AR is a condition with significant effect on quality of life. Surgical correction of secondary AR, owing to deviated nasal septum, by septoplasty and inferior turbinate reconstruction with autogenous cartilage had good effect on SNOT-25 and quality of life, with no complications.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

Table 4 The mean values of ENT-specific symptoms

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>3 months</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryness</td>
<td>4.53</td>
<td>1.92</td>
<td>1.15</td>
<td>1</td>
</tr>
<tr>
<td>Difficulty with nasal breathing</td>
<td>4.77</td>
<td>2.07</td>
<td>0.92</td>
<td>1.08</td>
</tr>
<tr>
<td>Suffocation</td>
<td>4</td>
<td>1.54</td>
<td>0.92</td>
<td>0.77</td>
</tr>
<tr>
<td>Nose is too open</td>
<td>4.46</td>
<td>2</td>
<td>1</td>
<td>0.84</td>
</tr>
<tr>
<td>Nasal crusting</td>
<td>4.15</td>
<td>1.77</td>
<td>0.69</td>
<td>0.76</td>
</tr>
</tbody>
</table>

P-value between preoperative and 12 months postoperatively was <0.01 highly significant.

(a) The preoperative atrophic nasal mucosa with crustations and (b) postoperative after 12 months of follow-up showing the inferior turbinate (double star) and plugging pocket of reconstructed cartilage just below the inferior turbinate (single star) suction tip (s) in between (c) preoperative computed tomography and (d) postoperative computed tomography.