Sphenoid sinus cholesterol granuloma with orbital complications: a case report
Qais Aljfout a, Maysoon Al-Ruhaibeh b, Laith Dahoun a, Waffa Al-Shawayat c, Sara Qais d

Introduction
Cholesterol granuloma of the paranasal sinuses is one of the rare encounters in otorhinolaryngology practice. It describes a lesion that is characterized by the presence of what is known as cholesterol clefts associated with cholesterol crystals accompanied by a foreign body reaction in a closed cavity [1–3]. It can affect the middle ear, petrous apex, breast, lung, kidney, liver, and other parts of the body [1].

Clinical findings are not specific, and imaging usually reveals an expanding cystic mass lesion and it can help in the diagnosis [4]. In this paper, we present a case of sphenoid sinus cholesterol granuloma with orbital complications.

The case
A 32-year-old woman was referred to our clinic by an ophthalmologist who had evaluated her for severe headache and left periorbital pain for many years, and her symptoms increased in the last few months. Her complaints were associated with left eye decreased vision. Initial evaluation in the ophthalmology clinic showed decreased visual acuity on the left eye 6/12. An MRI was requested for both the brain and orbit, which showed an expansile lesion in the area of sphenoid sinuses 4.5 × 5 cm with upward displacement of the sella and compression of left optic nerve. The lesion showed isointense signal on T1 and hyperintense signal on T2 (Fig. 1), and the radiologist’s impression was a sphenoid sinus mucocele; with this report, the patient was sent to our clinic. Her past medical history was unremarkable with no history of trauma or sinonasal surgery. Her examination showed mild left eye exophthalmos; endoscopic examination of the nose was unremarkable. Computed tomography scan of paranasal sinuses was requested and showed expansile 4.5 × 5 cm cystic lesion of the sphenoid sinuses mostly representing the sphenoid sinus mucocele Fig. 2. The patient was sent back to the ophthalmologist with specific request to evaluate color vision and visual fields. Reevaluation showed affected color vision on the left 5/16 and visual field defect in the superior temporal quadrant. Situation was explained to the patient and she gave consent for endoscopic approach for management of this lesion, which mostly represents a mucocele both clinically and radiologically. At the time of surgery, a careful dissection to the anterior wall of the sphenoid revealed an unusual wall for this cystic lesion (Fig. 3). Therefore, we decided to use a spinal needle to do aspiration which revealed a straw color thin fluid (Fig. 4). The diagnosis of the mucocele was disregarded and continued our work carefully to open the lesion. Part of the anterior wall was removed and it revealed a cleft full of crystals (Figs. 5 and 6). At this moment, the diagnosis of cholesterol granuloma was made and waited a confirmation by the histopathologist. Drainage procedure was done where the anterior wall of the sphenoid sinus was removed. Few days later, histopathology report confirmed chronic inflammation and fibrosis with cholesterol cleft in keeping with the clinical diagnosis of cholesterol granulomas (Figs. 6 and 7). The patient’s headache and periorbital pain disappeared completely, but her vision did not improve, and she is still followed up in our clinic with no recurrence.
Discussion

Cholesterol granuloma of paranasal sinuses is a rare disease. Maxillary sinus followed by the frontal sinus are mostly affected; ethmoid sinuses and sphenoid are much less affected. In otorhinolaryngology practice, the middle ear and petrous apex are the usual affected sites. Although the exact pathogenesis is not known, the most accepted theory suggested that in an obstructed sinus whatever the cause, inflammatory, traumatic, or surgical, pressure changes lead to obstruction of drainage pathways of venous and lymphatic vessels which may lead to hemorrhage. The breakdown of the erythrocyte membrane leads to leakage of lipid components of the red blood cell and this in the presence of lymphatic obstruction leads to the formation of cholesterol crystals and their esters [5,6] and this result in foreign body reaction to the crystals [7]. The most important factor in cholesterol granuloma formation is a closed cavity with hemorrhage and exudates inside [8]. According to literature reports 11% of cases had prior history of surgery and 14% had history of trauma [9].

Men are more affected than women with a male to female ratio of 3:1, and most people affected are in their fourth and fifth decades of life.

The clinical diagnosis is usually challenging in cases of cholesterol granuloma of paranasal sinuses; the presenting symptoms are not specific; nasal obstruction, periorbital pain, headache, and proptosis are among the most reported [9] and symptoms differ according to the site and degree of expansion of the lesion. Clinical and endoscopic examination are not pathognomonic. It may show a polyp or even a benign mass.

Imaging is helpful in the diagnosis of cholesterol granuloma; computed tomography scan usually reveals an expansile cystic lesion that causes bone erosion and compressing adjacent structures [9]. This picture
is not diagnostic, and it cannot be distinguished from
the mucocele, which is the most common lesion.
On the other hand, MRI shows an expanding lesion
with well-defined margins. The lesion usually gives
hyperintense signal on T1 and T2 images [10]. In our
case, the lesion did not show a hyperintense signal on
T1 which made mucocele the preoperative diagnosis,
since mucoceles show hypointense or isointense signal
on T1 and hyperintense signal on T2 [11]. This is not
a stranded rule, as the degree of intensity depend on
water, protein, or blood content of the lesion [11].

Cholesterol granuloma is treated through surgical
drainage procedures. At present, endoscopic approaches
are the most used to drain and ventilate the affected
sinuses [12,13]. While in the past, different open
approaches were used to drain the lesion according to
the sinus affected, for example, Caldwell-Luc or lateral
rhinotomy approaches [14,15]. The recurrence is rare
and is reported to be less than 4% with all recurrences
happening after the open approach [9].

Conclusion

Cholesterol granuloma should be included in
the differential diagnosis of an expanding cystic
lesion of paranasal sinuses. Its MRI characteristics
are distinguishable but not pathognomonic, and
endoscopic surgery is the best approach.

Acknowledgements

The authors certify that they have obtained all
appropriate patient consent forms.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Almada CB, Fonseca DR, Vanzillotta RR, Pires FR. Cholesterol granuloma
 of compressive optic neuropathy caused by sphenoid sinus cholesterol
3. Nakagawa T, Asato R, Ito J. Cholesterol granuloma of the posterior
 granuloma of the frontal sinus: a case report. Case Rep Otolaryngol 2012;
 2012:515986.
5. Graham J, Michaels L. Cholesterol granuloma of the maxillary antrum.
Sphenoid sinus cholesterol granuloma

Aljfout et al. 43

