Mometasone furoate aqueous nasal spray in management of adenoidal hypertrophy in children

Fahd Alharbi
Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of medicine, Jazan University, Jazan, Saudi Arabia, Department of Otorhinolaryngology-Head and Neck Surgery, Prince Mohammad bin Nasser, Jazan, Saudi Arabia

Mohammed Rifaat Ahmed
Department of Otolaryngology-Head & Neck Surgery, Faculty of Medicine, Suez University, Egypt

Recommended Citation

This Article is brought to you for free and open access by Pan Arab Journal of Rhinology (PAJR). It has been accepted for inclusion in Pan Arab Journal of Rhinology by an authorized editor of Pan Arab Journal of Rhinology (PAJR).
Mometasone furoate aqueous nasal spray in management of adenoidal hypertrophy in children

Fahd Alharbi,1,2 Mohammed Rifaat Ahmed3

1Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of medicine, Jazan University, Jazan, Saudi Arabia, 2Department of Otorhinolaryngology-Head and Neck Surgery, Prince Mohammad bin Nasser, Jazan, Saudi Arabia, 3Department of Otolaryngology-Head & Neck Surgery, Faculty of Medicine, Suez University, Egypt

Corresponding address is to: Fahd Alharbi
E-mail: fahdalharbi3@gmail.com
Tel: 00966543043452

Pan Arab Journal of Rhinology 2018, 8:88-94

Introduction

Nasal obstruction is a frequently encountered problem in the pediatric age group associated with a variety of etiological factors mainly attributable to adenoid hypertrophy results from chronic and/or recurrent infection of the upper respiratory tract or allergies. [1,2] Adenoid hypertrophy obstructs the nasopharyngeal airway, particularly at night when the patient is supine. Classically, the symptoms and physical signs considered indicative of nasal airway obstruction in children are mouth breathing, nasal voice and nocturnal snoring. [3] Delayed diagnosis and treatment of these diseases may result in consequences such as behavior alterations, low growth and weight gain, craniofacial alterations secondary to mouth breathing, mastication and swallowing disorders, in addition to cor pulmonale and left heart failure. [4] In addition, enlarged adenoids may also obstruct the Eustachian tube orifice leading to middle ear effusion and resulting in a conductive hearing loss. [5]

The lateral neck radiograph remains a widely used diagnostic modality in some countries for diagnosing children with suspected adenoid hypertrophy. The low cost, widespread availability, non-invasive nature and good correlation with symptoms and fiberoptic nasopharyngeal endoscopic findings are the main advantages of this diagnostic test. [6] Adenoidectomy can reduce both nasal obstructions and upper respiratory infections. However, some patients display clinically significantly persistent nasal symptoms even after surgery. Symptoms, such as nasal obstruction or recurrent upper respiratory infections, persist in 19–26% of patients. [7] There are two difficulties that have been described to prevent complete adenoid removal. Firstly, lymphoid tissue in the pharyngeal recess is considered by all authors as difficult to remove, [8] the second difficulty is the bulging adenoid tissue into the posterior choanae, which was addressed by Pearl and Manoukian as they found choanal adenoids in 9% of their study group. [9]

As adjunctive treatments, medical methods for reduction of adenoid size are limited. However, recent studies showed that topical nasal corticosteroid spray reduced adenoid size and improved symptoms of nasal airway obstruction and obstructive sleep apnea. [10] Therefore, we found it is important to assess the efficacy of Mometasone furoate aqueous nasal spray in management of adenoidal hypertrophy in children.

Materials and Methods

Design, setting and participants

A double randomized clinical trial was performed in the Department of Otolaryngology-Head and Neck Surgery, Jazan University between June 2015 and March 2016. The study protocol was approved by the local ethical committee and written informed consent was obtained from all patients.

Patient eligibility and enrolment

Patients of both sexes aged (5-12 years old) and attending the ENT outpatient clinic and with adenoid hypertrophy were included in the study. Patients were excluded if they had nasal masses, hypersensitivity to Mometasone furoate aqueous nasal spray, craniofacial abnormality or congenital anomalies.

Study plan

Assessment of each child upon entering the study included the following: history and physical examination, parental questionnaire, lateral nasopharyngeal radiograph.

Background: Nasal obstruction is a frequently encountered problem in the pediatric age group obstructs the nasopharyngeal airway and Eustachian tube orifice resulting in a conductive hearing loss. Topical nasal corticosteroid spray reduced adenoid size and improved symptoms of nasal airway obstruction and obstructive sleep apnea.

Aim of the study: To evaluate the efficacy of Mometasone furoate aqueous nasal spray in management of adenoidal hypertrophy in children.

Methodology/Principal: A double randomized clinical trial was performed on 168 adenoid hypertrophy patients divided randomly into two equal groups: study group (received Mometasone furoate aqueous nasal spray for 6 weeks) and control group (received nasal normal saline drops for the same period).

Results: The study group patients show significant improvement in nasal obstruction from 60.7% to 27.4% after treatment, mouth breathing from 84.2% to 25%, snoring from 72.6% to 31% and nasal discharge from 64.2% to 22.6%.

Conclusion: Intranasal Mometasone furoate aqueous nasal spray may obtain some successful results in some cases of adenoid hypertrophy to improve nasal obstruction symptoms and may be associated with a reduction in adenoid size.

Keywords: Corticosteroids; Obstruction; Adenoid; Mometasone; Randomized controlled trial.
The lateral view X-ray of the nasopharynx, the size of the adenoids was graded according to the palatal airway measured from the most convex point of the adenoid tissue to the soft palate, the narrowest distance between the nasopharyngeal soft tissue and the soft palate was taken. Grading was as follows, Grade 1: >6mm; Grade 2: 4–6mm; Grade 3: 0–3mm. [11]

All patients included in the study had complete head and neck examination, including rigid fiberoptic nasal endoscopy. Topical anaesthesia in the form of a mixture of lidocaine/phenylephrine was applied prior to endoscopic examination. Patients were asked to maintain a supine position without restraint during the examination; but in some patients it was necessary to immobilize the head.

Patients were graded as follow grade 1 <50% of choanal space was occupied by the adenoid tissue, grade 2 50–75% grade 3 >75% choanal obstruction. [12] Tympanometry performed for patients diagnosed clinically with otitis media with effusion.

Randomization

Patients with adenoid hypertrophy were divided randomly into two equal groups: study group (received Mometasone furoate aqueous nasal spray 100 mcg/day for 6 weeks) and control group (received nasal saline drops for the same period) All patients included in the study were assessed by history and physical examination, parental questionnaire, lateral nasopharyngeal radiograph, rigid fiberoptic nasal endoscopy and tympanometry.

Objective and outcome measurement assessment

The objective was to verify clinically the improvement subjectively using another questionnaire after 6 weeks from initiation the treatment in both groups and objectively by performing another lateral nasopharynx X-ray view of all participants in the study and rigid fiberoptic nasal endoscopy to compare the finding before and after the treatment.

Data collection, allocation concealment and blinding

At study enrolment (day 0), each parent's participant underwent a brief interview with the physician to complete a questionnaire, and provide demographic and disease-related information. The outcomes were assessed by another interview, which was conducted at the end of treatment.

Statistical analysis

Data collected were processed using SPSS version 22 (SPSS Inc., Chicago, IL, USA).

Ethical considerations

Written informed consent was obtained from all parent's patients. The local ethical committee approved the study.

Results

168 adenoid hypertrophy patients with the previous inclusion criteria (mean age 6.3 years, 74 females and 94 males) attended to outpatient clinic in Suez Canal university hospital included to our study. All patients’ relatives were required to complete a questionnaire assessing their nasal symptoms, pre-treatment and 6 weeks after treatment.

Patients were randomly divided into 2 groups: Study group (n=84), 35 females and 49 males received Mometasone furoate aqueous nasal spray 100 mcg/day for 6 weeks and control group (n=84), 39 females and 45 males received sodium chloride 7.4mg/ml nasal drops for the same period.

The main symptom among the study group patients was nasal obstruction either alone in 51 patients (60.7%) or in combination with other symptoms in 79 patients (94%). The second most common symptom was mouth breathing in 71 patients (84.2%), snoring in 61 patients (72.6%), nasal discharge in 54 patients (64.2%), Hearing loss was presenting the symptom in 9 patients (10.7%), persistent cough in 5 patients (5.9%) and Nocturnal enuresis in 3 patients (3.5%)- (Table 1).

On the other hand, the distribution of signs in order of frequency was adenoid facies in 34 patients (40.5%), postnasal discharge in 28 patients (33.3%), tympanic membrane retraction in 14 patients (16.7%), and hypertrophied inferior turbinate in 8 patients (9.5%)- (Table 2). In lateral nasopharynx X-ray view, we find that 64 patients (76.2%) were in grade 2, 13 patients (15.5%) were in grade 3 while 7 patients (8.3%) were in grade 1- (Table 3). In endoscopic examination of the nasopharynx, we find that 49 patients (58.3 %) were in grade 2, 26 patients (31%) were in grade 1 while 9 patients (10.7%) were in grade 3. (Table 4).

After 6 weeks from Mometasone furoate aqueous nasal spray administration, nasal obstruction found in 23 patients (27.4%) mouth breathing in 21 patients (25%), snoring in 26 patients (31%), nasal discharge in 19 patients (22.6 %), no documentations for hearing loss, cough and nocturnal enuresis- (Table 5). Follow-up by lateral nasopharynx X-ray view showed that 55 patients (65.5%) were in grade 3, 25 patients (29.8 %) were in grade 2 while 4 patients (4.7%) were in grade 1- (Table 6).

Follow-up by endoscopic examination of the nasopharynx revealed 59 patients (70.3 %) were in grade 1, 21 patients (25%) were in grade 2, while 4 patients (4.7%) were in grade 3- (Table 7).

The main symptom among the control group patients was nasal obstruction either alone in 49 patients (58.3%) or in combination with other symptoms in 77 patients (91.7%), the second most common was mouth breathing in 68 patients (80.9%), snoring in 63 patients (75%), nasal discharge in 51 patients (60.7%), Hearing loss was presenting the symptom in 11 patients (13.1%), persistent cough in 3 patients (3.5%) and nocturnal enuresis in 3 patients (3.5%)- (Table 1). The signs were adenoid facies in 36 patients (42.8%), postnasal discharge in 26 patients (31%), tympanic membrane retraction in 15 patients (17.8%), and hypertrophied inferior turbinate in 10 patients (11.9%)- (Table 2).

The degree of adenoid enlargement according to lateral nasopharynx X-ray view: 60 patients (71.5%) were in grade 2, 14 patients (16.6%) were in grade 3 while 10 patients (11.9%) were in grade 1- (Table 3). Endoscopic examination revealed that 51 patients (60.7 %) were in grade 2 adenoid enlargement, 23 patients (27.4%) were in grade 1 while 10 patients (11.9%) were in grade 3- (Table 4).

After 6 weeks from placebo administration in form of sodium chloride 7.4mg/ml nasal drops, nasal obstruction found in 47 patients (55.9%) mouth breathing in 63 patients (75%), snoring in 59 patients (70.2 %), nasal discharge in 50 patients (59.5%), Hearing loss was presenting symptom in 9 patients (10.7%), persistent cough in 3 patients (3.5%) and Nocturnal enuresis in 3 patients (3.5%). (Table 5).

Follow up lateral nasopharynx X-ray view showed that 60 patients (71.5%) were in grade 2, 14 patients (16.6%) were in grade 3 while 10 patients (11.9%) were in grade 1- (Table 6). Endoscopic examination of the nasopharynx revealed that 51 patients (60.7 %) were in grade 2 adenoid enlargement, 23 patients (27.4%) were in grade 1 while 10 patients (11.9%) were in grade 3- (Table 7).
patients (11.9%) were in grade 3 -Table 7).

From point of view for the previous results we could realize that the study group who subjected to Mometasone furoate aqueous nasal spray administration for 6 weeks revealed a statistically significant improvement subjectively in the nasal symptoms compared with the control group who received sodium chloride 7.4mg/ml nasal drops for same period and objectively statistically significant improvement in both radiological and endoscopic evaluation follow up (Figs. 1-3).

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Study group</th>
<th>Control group</th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal obstruction + other symptoms</td>
<td>79</td>
<td>77</td>
<td>0.55</td>
<td>0.754</td>
</tr>
<tr>
<td>Mouth breathing</td>
<td>71</td>
<td>68</td>
<td>0.78</td>
<td>0.639</td>
</tr>
<tr>
<td>Snoring in patients</td>
<td>61</td>
<td>63</td>
<td>0.18</td>
<td>0.581</td>
</tr>
<tr>
<td>Nasal discharge</td>
<td>54</td>
<td>51</td>
<td>0.35</td>
<td>0.709</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>9</td>
<td>11</td>
<td>0.76</td>
<td>0.764</td>
</tr>
<tr>
<td>Persistent cough</td>
<td>5</td>
<td>3</td>
<td>0.43</td>
<td>0.617</td>
</tr>
<tr>
<td>Nocturnal enuresis</td>
<td>3</td>
<td>3</td>
<td>0.19</td>
<td>0.516</td>
</tr>
</tbody>
</table>

Insignificant P value > 0.05.

<table>
<thead>
<tr>
<th>Signs</th>
<th>Study group</th>
<th>Control group</th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenoid facies</td>
<td>34</td>
<td>36</td>
<td>0.9</td>
<td>0.943</td>
</tr>
<tr>
<td>Postnasal discharge</td>
<td>28</td>
<td>26</td>
<td>0.7</td>
<td>0.759</td>
</tr>
<tr>
<td>Tympanic membrane retraction</td>
<td>14</td>
<td>15</td>
<td>0.9</td>
<td>0.843</td>
</tr>
<tr>
<td>Hypertrophied inferior turbinate</td>
<td>8</td>
<td>10</td>
<td>0.9</td>
<td>0.843</td>
</tr>
</tbody>
</table>

Insignificant P value > 0.05.

<table>
<thead>
<tr>
<th>X ray adenoid size</th>
<th>Study group</th>
<th>Control group</th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>7</td>
<td>10</td>
<td>0.18</td>
<td>0.581</td>
</tr>
<tr>
<td>Grade 2</td>
<td>64</td>
<td>60</td>
<td>0.34</td>
<td>0.607</td>
</tr>
<tr>
<td>Grade 3</td>
<td>13</td>
<td>14</td>
<td>0.27</td>
<td>0.529</td>
</tr>
</tbody>
</table>

Insignificant P value > 0.05.

<table>
<thead>
<tr>
<th>Endoscopic adenoid size</th>
<th>Study group</th>
<th>Control group</th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>26</td>
<td>23</td>
<td>0.49</td>
<td>0.542</td>
</tr>
<tr>
<td>Grade 2</td>
<td>49</td>
<td>51</td>
<td>0.41</td>
<td>0.559</td>
</tr>
<tr>
<td>Grade 3</td>
<td>9</td>
<td>10</td>
<td>0.33</td>
<td>0.611</td>
</tr>
</tbody>
</table>

Insignificant P value > 0.05.
Table 5 Nasal symptoms after 6 weeks from treatment

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Study group</th>
<th></th>
<th>Control group</th>
<th></th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (84)</td>
<td>%</td>
<td>N (84)</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nasal obstruction</td>
<td>23</td>
<td>27.4%</td>
<td>47</td>
<td>55.9%</td>
<td>2.47</td>
<td>0.023*</td>
</tr>
<tr>
<td>mouth breathing</td>
<td>21</td>
<td>25%</td>
<td>63</td>
<td>75%</td>
<td>2.52</td>
<td>0.019*</td>
</tr>
<tr>
<td>snoring in patients</td>
<td>26</td>
<td>31%</td>
<td>59</td>
<td>70.2%</td>
<td>2.08</td>
<td>0.05*</td>
</tr>
<tr>
<td>Nasal discharge</td>
<td>19</td>
<td>22.6%</td>
<td>50</td>
<td>59.5%</td>
<td>2.38</td>
<td>0.028*</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>10.7%</td>
<td>7.03</td>
<td>0.008*</td>
</tr>
<tr>
<td>persistent cough</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.5%</td>
<td>2.08</td>
<td>0.05*</td>
</tr>
<tr>
<td>Nocturnal enuresis</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.5%</td>
<td>2.08</td>
<td>0.05*</td>
</tr>
</tbody>
</table>

*Significant p <0.05.

Table 6 X ray adenoid enlargement size after 6 weeks from treatment

<table>
<thead>
<tr>
<th>X ray adenoid size</th>
<th>Study group</th>
<th></th>
<th>Control group</th>
<th></th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (84)</td>
<td>%</td>
<td>N (84)</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>4</td>
<td>4.7%</td>
<td>10</td>
<td>11.9%</td>
<td>2.37</td>
<td>0.02*</td>
</tr>
<tr>
<td>Grade 2</td>
<td>25</td>
<td>29.8%</td>
<td>60</td>
<td>71.5%</td>
<td>2.11</td>
<td>0.04*</td>
</tr>
<tr>
<td>Grade 3</td>
<td>55</td>
<td>65.5%</td>
<td>14</td>
<td>16.6%</td>
<td>2.76</td>
<td>0.03*</td>
</tr>
</tbody>
</table>

*Significant p <0.05.

Table 7 Endoscopic adenoid enlargement size after 6 weeks from treatment

<table>
<thead>
<tr>
<th>Endoscopic evaluation adenoid size</th>
<th>Study group</th>
<th></th>
<th>Control group</th>
<th></th>
<th>t-test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (84)</td>
<td>%</td>
<td>N (84)</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>59</td>
<td>70.3%</td>
<td>23</td>
<td>27.4%</td>
<td>2.09</td>
<td>0.045*</td>
</tr>
<tr>
<td>Grade 2</td>
<td>21</td>
<td>25%</td>
<td>51</td>
<td>60.7%</td>
<td>2.14</td>
<td>0.029*</td>
</tr>
<tr>
<td>Grade 3</td>
<td>4</td>
<td>4.7%</td>
<td>10</td>
<td>11.9%</td>
<td>2.44</td>
<td>0.041*</td>
</tr>
</tbody>
</table>

*Significant p <0.05.

![Fig 1. Nasal symptoms after 6 weeks from treatment](image-url)
Fig 2. X-ray adenoid enlargement size after 6 weeks from treatment.

Fig 3. Endoscopic adenoid enlargement size after 6 weeks from treatment.
Discussion
Adenoid hypertrophy has major impact in airway as a common cause of upper-airway obstruction in children and in severe cases may result in cor pulmonale, pulmonary vascular hypertension, alveolar hypoventilation, excessive snoring, and symptoms of chronic sinussitis with enlarged adenoid pads blocking the choana. [13] Chronic mouth-breathing secondary to adenoid hypertrophy and upper-airway obstruction has been shown to affect craniofacial growth patterns in children with features of adenoid facies. [14] Relation between adenoid hypertrophy and recurrent middle ear effusion with hearing impairment has been established. [15]

Lateral nasopharynx X-ray view may be helpful in assessing adenoid hypertrophy as still the main imaging study to evaluate the adenoid over the years. Various dimensions of the nasal cavity and nasopharynx have been measured to assess the degree of obstruction caused by adenoid hypertrophy and the aim is to correlate the measurements with the clinical manifestations with many techniques focus on the size of the nasopharyngeal stripe, which indicates the amount of airflow through the nasopharynx. [16]

This measurement seems to be most accurate when the nasopharyngeal stripe is half the size of the soft palate, significant obstruction occurs determine that the adenoid-nasopharyngeal ratio, measured by lateral neck closely correlated with clinical symptomatology related to adenoid hypertrophy. [17]

Serious postoperative complications related to surgery for the tonsils and adenoids have been reported. [18]

Fiberoptic nasopharyngeal endoscopy is considered the gold standard for the diagnosis and evaluation of adenoidal hypertrophy. This diagnostic method allows direct visualization of the nasal cavity and the nasopharynx providing a dynamic evaluation of the magnitude of nasal airway obstruction over the requirement of costly equipment and the need for child co-operation limit this diagnostic approach. [19] Our study data shows much improvement in the study group received Mometasone furoate after 6 weeks from initiation treatment subjectively as reduction in most of the nasal symptoms compared with it prior to the treatment.

The mechanism by which topical steroids would improve nasal airway obstructive symptoms remains unclear. [20] Criscuoli 2003 et al stated that there is improvement of nasal obstruction symptoms due to decrease adenoid size. after the application of nasal beclomethasone after two weeks. In spite of the short-term effect of intranasal corticosteroids, the long term outcome in patients who respond to therapy remains unclear. [21] Intranasal corticosteroids have been generally well tolerated and cause only mild side effects, even in the pediatric population. [22]

Zhang et al mentioned that intranasal corticosteroids may significantly improve nasal obstruction symptoms in children with moderate to severe adenoid hypertrophy, and this improvement is due to reduction of adenoid size. The long-term effect of intranasal corticosteroids in these patients remains to be defined. [23] Although it is not yet clear by which mechanisms the steroids reduce the nasal airway obstruction, however, there are some theories such as the anti-inflammatory effect of steroids that help to reduce adenoid size. [24]

Among several commercially available nasal steroid sprays, we select mometasone furoate for this study. This drug had report no adverse effects on growth and hypothalamic pituitary adrenal axis. Also, the systemic availability of the drug after topical administration is lower than that of other steroids. [25] A recent study provided evidence that treatment with nasal steroids can be an effective management for adenoid hypertrophy and help in avoiding adenoidectomy as there was significant reduction in the size of the adenoid in lateral X-ray of the nasopharynx after 1 year with a p-value=.003. [11]

In this study, we do not replace the adenoidectomy operation, as it is the standard management for adenoid hypertrophy, but we search for another modality of management for cases that refused the surgical intervention or have a major contraindication for surgery.

Conclusion
Intranasal Mometasone furoate aqueous nasal spray may give some successful results in some cases of adenoid hypertrophy to improve nasal obstruction symptoms due to reduction of adenoid size.

Conflict of Interest
We conclude that there is no conflict of interest in writing this manuscript.

References
10. Alexopoulos EI, Kaditis AG, Kalampouka E, Kostadima E,

